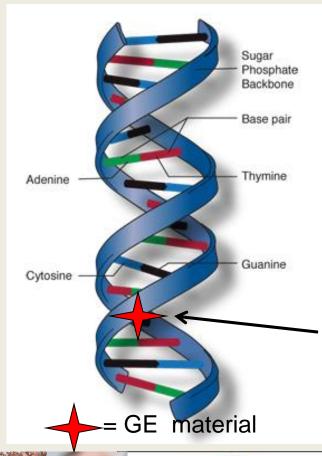


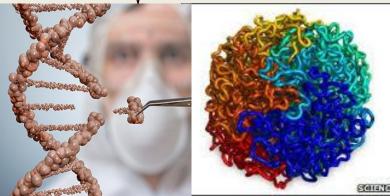
Understanding GMOs and Glyphosate's Universal Toxicity to Soil, Plants, Animals, and Humans

Don M. Huber Professor Emeritus, Purdue University

Genetic Engineering has been Promoted as the 21st Century Silver Bullet to Solve:

- Hunger and Malnutrition
- Climate change
- Economic well being
- Food safety and security
- Toxic chemical usage
- Environmental degradation
- Agricultural sustainability


It has failed on all points!


Consequences of Indiscriminate Use

- Sick Soils
 - Sterile infertile
 - Polluted/contaminated
- Vanishing Ecological Support
 - Vanishing pollinators
 - Malnutrition
 - Deteriorating water quality & retention
- Deteriorating Crop & Animal Health
 - Malnutrition
 - Acute and chronic diseases
 - Infertility
- Increased Human Suffering
 - Malnutrition
 - Disease epidemics
 - Infertility

Genetic Engineering is Based on Fossil Science

- GE is based on one gene, one function.
 GE is like a virus infection; not breeding.
- The code in GM crops is radically changed from that of the recipient and also the donner sources. GE changes the bases, spatial, amino acid, 'environmental' & internal relationships.
- There is nothing in the GE plant that nullifies the herbicide applied!
- The genetic material is 'promiscuous'.
- Always a yield drag.
- TWO THINGS TO CONSIDER:
 Consequences of genetics and products produced or tolerated

Understanding Glyphosate

Systemic and Persistent

Organic phosphate

Growth regulator

Mineral Chelater

Pathogen
Virulence enhancer

Synthetic amino acid

Toxicant

Herbicide

Antibiotic

Some Diseases Increased by Glyphosate

Host plant	Disease	Pathogen
Apple	Canker	Botryosphaeria dothidea
Banana	Panama	Fusarium oxysporum f.sp. cubense
Barley	Root rot	Magnaporthe grisea
Beans	Root rot	Fusarium solani f.sp. phaseoli
Bean	Damping off	Pythium spp.
Bean	Root rot	Thielaviopsis bassicola
Canola	Crown rot	Fusarium spp.
Canola	Wilt	Fusarium oxysporum
Citrus	CVC	Xylella fastidiosa
Corn	Root and Ear ro	ots <i>Fusarium</i> spp.
Cotton	Damping off	Pythium spp.
Cotton	Bunchy top	Manganese deficiency
Cotton	Wilt	F. oxysporum f.sp. vasinfectum
Grape	Black goo	Phaeomoniella chlamydospora
Melon	Root rot	Monosporascus cannonbalus
Soybeans	Root rot, Target	t spot Corynespora cassicola
Soybeans	White mold	Sclerotina sclerotiorium
Soybeans	SDS	Fusarium solani f.sp. glycines
Sugar beet	Rots, Damping	off Rhizoctonia and Fusarium
Sugarcane	Decline	Marasmius spp.
Tomato	Wilt (New)	Fusarium oxysporum f.sp. pisi
Various	Canker	Phytophthora spp.
Weeds	Biocontrol	Myrothecium verucaria
Wheat	Bare patch	Rhizoctonia solani
Wheat	Glume blotch	Septoria spp.
Wheat	Root rot	Fusarium spp.
Wheat	Head scab	Fusarium graminearum
Wheat	Take-all	Gaeumannomyces graminis

Food and Feed Safety Concerns

- > Reduced nutrient density
 - Co, Cu, Fe, Mg, Mn, Zn
- Increased levels of toxic products
 - Mycotoxins [Fusarium toxins (DON, NIV, ZEA), aflatoxins]
 - Allergenic proteins and metabolic toxins
- > Premature ageing, reproductive failure
- > Ecological disruption
 - bees, amphibians, plant diversity, GI tract, soil, etc.
- > Direct chronic toxicity of glyphosate
 - Cell death, immune failure, disease susceptibility
 - Endocrine system, infertility, birth defects, teratogenicity

Diseases Increasing in Incidence (Epidemic)

(after Fox, 2012; Antoniou et al., 2012, Samsel & Seneff, 2013; Swanson, 2013)

Allergies, Asthma Difficile diarrhea Alzheimer's Gluten intolerance **Arthritis** Gout Atopic dermatis **Indigestion** Autism Infertility Autoimmune diseases Inflammatory bowel disease Bipolar, Attn deficit (ADHD) Irritable bowel disease Birth defects Leaky gut syndrome **Bloat** (fatal) Liver abnormalities

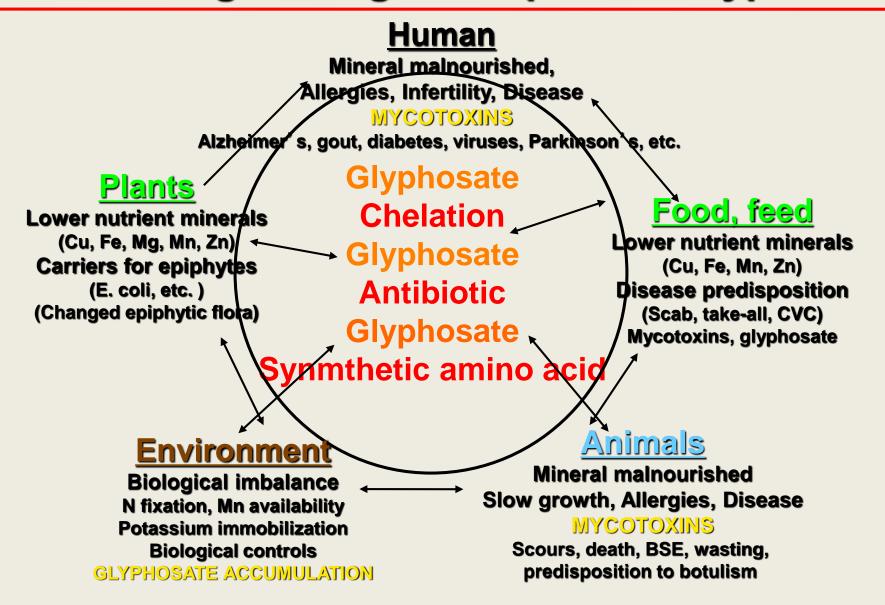
Bowel disease Miscarriage

Cancer (some) Morgellan's (NEW)

Celiac disease Multiple sclerosis

Chronic fatigue syndrome Non-alcoholie fatty liver disease

Colitis Obesity


Crohn's Pancreas abnormalities

Dementia Parkinson's

Diabetes Sudden Infant Death Syndrome

1995 1997 1999 2001 2003 2005 2007 2009 2011

Far-Reaching Ecological Impact of Glyphosate

Future historians may well look back and write about our time, not about how many pounds of pesticide we did or did not apply; but about how willing we are to sacrifice our children and jeopardize future generations with this massive experiment we call genetic engineering that is based on false promises and flawed science, just to benefit the "bottom line" of a commercial enterprise.

Dr. Don M. Huber, Professor Emeritus, Purdue University