

Reducing Synthetic Pesticides and Fertilizers

Results from the Long-term Farming Systems Comparisons Trials

E. Karanja^{1*}, D. Bautze², N. Adamtey², M. Musyoka¹, F. Matheri¹, K. Fiaboe¹, A. Muriuki³, J. Anyango³

¹International Centre of Insect Physiology and Ecology (ICIPE), Kenya ²Research Institute of Organic Farming (FiBL), Switzerland; Kenya Agricultural Livestock and Research Organization (KALRO)

Content

Background
Main findings
Productivity & Profitability
Soil fertility
Biodiversity
Conclusions

FiBL

Global challenges

SysCom 🊳

FiBL

Focus on research in Global North

FiBL long-term DOK trial proved higher top soil carbon values for organically farmed soils compared to non-organic

SysCom 🛞

Source: Gattinger et al. (2012)

Long-term Farming Systems Comparisons Trials in the Tropics (SysCom)

Why SysCom in the tropics project?

1. To compare organic versus conventional farming in relation to:-

- a) Quality and quantity of crop products
- b) Resource use efficiencies
- c) Sustainability of the agro-ecological system
- 2. Provide solid data that can be used to influence policy
- 3. To disseminate findings to stakeholders

Long-term Experiments at Chuka and Thika

- Running since 2006 at Chuka (Tharaka Nithi) and Thika (Murang'a county)
- 3-years-6-seasons maizebased crop rotation
- Randomized Complete Block Design with four farming systems

Sys Con

FiBl

Farming systems/Cropping pattern

System	Approach	Fertility mgt.	N (kg ha⁻¹)	P (kg ha ⁻¹)	P&D mgt.	Water mgt.
Conv-Low	Small-scale, home consumption and local market	Organic & synthetic fertilizer	45	60	Synthetic pesticides	Rainfed
Org-Low		Organic fertilizer	45	60	Bio-Pesticides	Rainfed
Conv-High	Commercial, domestic and export markets	Organic & synthetic fertilizer	225	286	Synthetic pesticides	Irrigation
Org-High		Organic fertilizer	225	286	Bio-Pesticides	Irrigation

8

Main findings – Productivity (Maize)

Main findings – Productivity (Baby corn)

- Comparable yields for organic and conventional farming system
- Spatial and temporal changes depending on weather, pest and disease pressure, and soil fertility

Source: Adamtey et al. (2016)

Main findings – Productivity (Potato)

- Yields for organic farming system generally lower in vegetables (sole crops, potato)
- Difference mostly due to pest and disease pressure, and nutrient availability

Source: unpublished data

Main findings – Profitability (production costs)

- Higher labour and input costs in high input compared to low input
- Higher labour costs in organic high input compared to conventional, due to fertilizer preparation costs

Main findings – Soil fertility (soil pH)

- Organic high input increased pH from 5.5 to 6.5 (Chuka) and 7.5 (Thika)
- Effect of alkaline materials like compost
 - Improvement of nutrient availability

Source: Adamtey et al. (submitted)

Main findings – Soil fertility (soil organic carbon)

 Organic high input increased SOC at both sites

- Increase started in the 3rd crop rotation (midterm effect)
- Stability of SOC is unknown

Source: Adamtey et al. (submitted)

Nitrogen utilization efficiency (PhD study)

SysCom

Source: Musyoka et al. (published)

FiBL

Higher abundance and diversity in organic high input systems at Chuka.

More damage at Thika site.

16

Source: Anyango et al. (submitted)

Soil physicochemical characteristics that influenced fungal diversity within farming systems (PhD study).

Conclusion

No silver bullet!!!

Organic agriculture has large potential to contribute to sustainable development ••• Soil fertility

- Biodiversity Conservation
- Productivity & Profitability

For full exploitation major efforts are needed to tackle:

- Agronomic/technological challenges (lack of input, pest management)
- Capacity development for farmers (technical know how)
- Institutional/governance challenges (markets, agri-business)
- Policy challenges

Acknowledgement

Donors

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

Local partners

African Insect Science for Food and Health

Fibl

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

I hanks! ANY QUESTIONS? You can find me at ⊷ ekaranja@icipe.org david.bautze@fibl.org